(1994– 2024)

> 30 años de la Consagración Constitucional de la Autonomía y Autarquía Universitaria en Argentina.





## UNIVERSIDAD NACIONAL DEL LITORAL

### FACULTAD DE INGENIERÍA Y CIENCIAS HÍDRICAS

#### **ESTADÍSTICA**

# RESPUESTAS DE GUÍA DE PRÁCTICA UNIDAD 7 – REGRESIÓN Y CORRELACIÓN

Responsable de cátedra: Prof. Juan Pablo Taulamet

**Equipo de cátedra:** *Auxiliares:* Lic. María José Llop (JTP) - Ing. Ana Lisa Eusebi (JTP) - Prof. Fátima Bolatti (JTP) - Ing. Franco Nardi (Ay. 1°) *Ayudantes:* AIA Cristian Bottazzi -

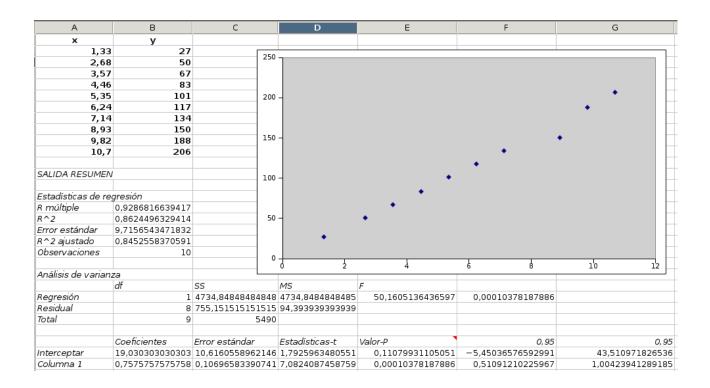
Téc. Eliana García

Carreras: Ingenierías en: Recursos Hídricos - Ambiental - Agrimensura

**AÑO ACADÉMICO 2024** 



#### Ejercicio 1



a) De la observación del gráfico de dispersión parece adecuado proponer un modelo lineal para establecer una relación entre las variables velocidad y esfuerzo.

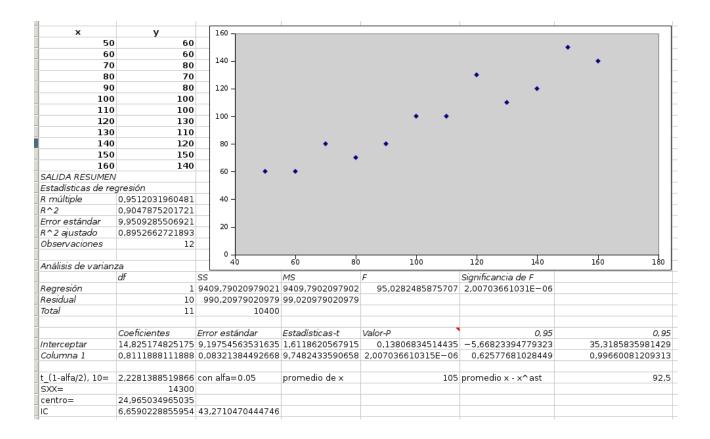
Se observa que el coeficiente de determinación  $r^2$  es 0.989, es decir que el modelo propuesto sirve para explicar el 98% de la variabilidad de Y. A su vez por tratarse de un modelo lineal, cobra especial sentido analizar el valor del coeficiente de correlación r=0,928 que implica un alto grado de asociación lineal entre las variables. Considerando que el coreficiente de correlación es positivo, la relación entre X e Y es directamente proporcional.

Además, la recta que resulta de la estimación por mínimos cuadrados es  $\hat{y} = 0.698 + 18.532x$ .

- b) El valor estimado por mínimos cuadrados del coeficiente de regresión (pendiente de la recta b) es de 18.532. En la tabla además se presenta un intervalo del 95% para ese coeficiente. Como 20 es un valor perteneciente al intervalo calculado, 20 es un valor posible para la pendiente  $\beta$  con esa confianza.
- c) Cuando x = 14, el valor esperado de y resulta  $0.698+18.532\ 14 = 260.151$



#### Ejercicio 2

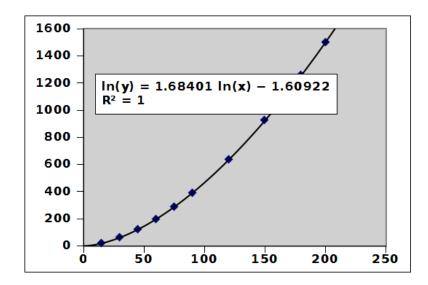


- a) La recta obtenida por el método de mínimos cuadrados es  $\hat{y}=14.82+0.81x$ . El valor obtenido para el coeficiente de determinación  $r^2=0.9047$ , pero por tratarse de un modelo lineal, le daremos más importancia al valor del coeficiente de correlación r=0.95 que implica un fuerte grado de relación lineal proporcional, por lo que el ajuste obtenido puede servir para ser usado como herramienta de pronóstico.
- b) De la tabla resulta que la varianza de la regresión estimada es 99.02.
- c) La estimación puntual de la pendiente b es 0.81 y el IC para  $\beta$  con  $1-\alpha=95\%$  resulta (0.63,0.99). d) El valor de la esperanza estimada de y cuando x=12.5, es 24.96. Un intervalo del 95% de confianza para el parámetro en estudio resulta (6.66,43.27). Observación: el valor de x para el cual se desea estimar no pertenece al rango de valores de x con el cual se realizó el ajuste. Luego, los valores estimados arriba son válidos si el modelo es válido para valores de x tan pequeños como 12.5.



## Ejercicio 3

A partir del uso de un software puede encontrarse una relación logarítmica en el dispersiograma:

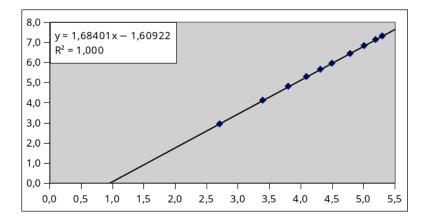


El coeficiente de determinación es igual a 1: todos los puntos están situados exactamente sobre la curva.

A su vez, si se estudia la relación lineal entre ln(Q) y ln(h), se pueden construir la siguiente tabla:

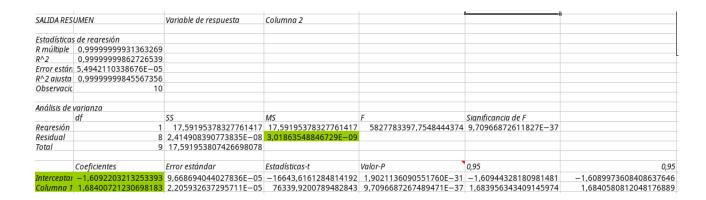
| ln(h) | ln(Q) |
|-------|-------|
| 2.7   | 3,0   |
| 3.4   | 4,1   |
| 3.8   | 4,8   |
| 4.1   | 5,3   |
| 4.3   | 5,7   |
| 4.5   | 6,0   |
| 4.8   | 6,5   |
| 5.0   | 6,8   |
| 5.2   | 7,1   |
| 5.3   | 7,3   |

A partir de lo anterior se puede obtener el siguiente dispersiograma:



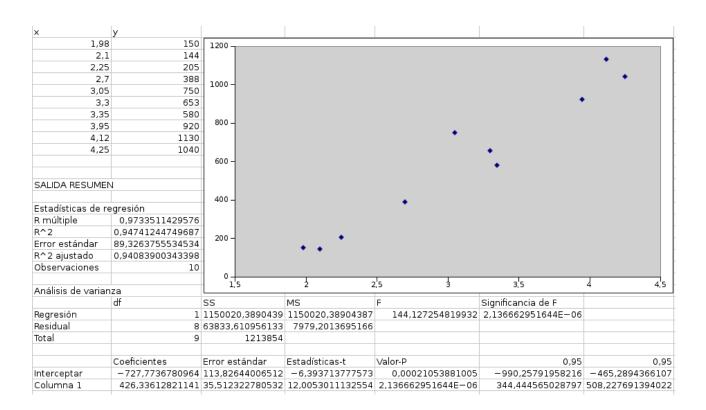


En ese caso la relación lineal es perfecta ya que posee un coeficiente de correlación igual a 1. A continuación se presenta el análisis de regresión:



b) El modelo de regresión permite estimar en forma puntual que si  $\hat{Q}=exp(1.68401*ln(400)-1.60922)=4819.70m^3/s$  cuando h=400cm.

## Ejercicio 4



- a) Si se propone un modelo lineal se obtiene el ajuste:  $\hat{y} = -727.774 + 426.336x$ .
- b) Para el caso del modelo polinomial de orden 2 de la se obtiene 1 función:  $\hat{y} = -704.040 + 409.995x + 2.629x^2$ .
- c) Para el caso cuadrático se considera  $r^2 \approx 0.95$ . Para el caso lineal se toma  $r \approx 0.97$ .



#### d) Para el modelo lineal simple se tiene:

IC del 95% para  $\alpha$  (intersección con el eje y): (-990.258, -465.289) IC del 95% para  $\beta$  (pendiente de la recta): (344.444, 508.228) Para el modelo que contiene el término cuadrático de la variable explicativa: IC del 95% para  $\alpha$  (intersección con el eje y): (-2031.383, 623.303) IC del 95% para  $\beta_1$  (coeficiente del término lineal): (-486.697, 1306.687) IC del 95% para  $\beta_2$  (coeficiente del término cuadrático): (-140.888, 146.146)

e) El coeficiente correspondiente al término cuadrático no resulta significativamente distinto de 0 (valor p = 0.967). Además se tiene que para ambos modelos  $r^2 = 0.947$ , lo que indica que la incorporación del término cuadrático no aporta ninguna información para explicar la variabilidad de y si ya incorporamos x al modelo. A su vez para el caso lineal corresponde evaluar el valor de r = 0.973 por lo que el ajuste lineal es levemente mejor que el cuadrático.

#### f) Interpretaciones para conversar en clase.

| Media                  | 0,00    |
|------------------------|---------|
| Error estándar         | 26,63   |
| Mediana                | -26,31  |
| Moda                   | #N/D    |
| Desviación estándar    | 84,22   |
| Varianza de la muestra | 7092,62 |
| Curtosis               | 1,37    |
| Desviación             | 1,09    |
| Rango                  | 297,90  |
| Mínimo                 | -120,45 |
| Máximo                 | 177,45  |
| Suma                   | 0,00    |
| Cuenta                 | 10,00   |

